Algebraic topology of neurons



Persistence diagrams



Filtration over a point cloud: Vietoris-Rips or Cech

Persistence diagrams (barcodes) represent the evolution of topological features with
respect to a parameter: here size of spheres epsilon




Filtration over a point cloud: Height filtration

Persistence diagrams (barcodes) represent the evolution of topological features with

respect to a parameter: here height of a curve
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Filtration of a tree: Topological Morphology Descriptor

In TMD we compute the evolution of topological features by traversing the tree with
respect to a function f (radial distance, path distance etc...)

Tree structure Persistence barcode Persistence diagram
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Once we extract the persistence diagrams...

How can we compare them, compute distances and statistics between them and
eventually use them with machine learning tools?



Persistence distances



How do we compute distances between diagrams?

In Euclidean space is it “easy” to compute distances between points by computing
the difference in each dimension:




How do we compute distances between diagrams?

In the space of persistence diagrams we have a few problems to compute

distances...




How do we compute distances between diagrams?

Problem #1 in persistence diagrams: how to match dimensions? For example, red

diagram has 12 points while blue has 10 points
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How do we compute distances between diagrams?

Problem #1 in persistence diagrams: how to match dimensions? By adding

infinitely many points on the diagonal of the diagrams.
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How do we compute distances between diagrams?

Problem #2 in persistence diagrams: how to align dimensions? Which points in the

red diagram should be matched to each point in the blue diagram?
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How do we compute distances between diagrams?

Problem #2 in persistence diagrams: how to align dimensions? Optimization
algorithm so that some quantity is minimized: red points matched either to blue
points or points in the diagonal. The optimal matching depends on the distance!




Bottleneck distance

The bottleneck distance measures
the similarity between two
persistence diagrams. It is the
shortest distance dB for which there
exists a perfect matching between
the points of the two diagrams
(completed with all the points on
the diagonal in order to ignore
cardinality mismatchs) such that
any couple of matched points are at
distance at most dB
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Chazal and Michel 2021
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Bottleneck distance

Let X and Y be two persistence diagrams. To define the distance between them,
we consider bijections 1 : X — Y and record the supremum of the distances
between corresponding points for each. Measuring distance between points
x=(x1,x2)andy=(yl,y2)as|[x-y|| =max{|lx1-y1],|x2-y2]|}and
taking the infimum over all bijections, we get the bottleneck distance between
the diagrams:

We(X,Y) = inf_sup |lz—n(z)|

N:X—=Y peXx
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Bottleneck distance

Intuitively, the dB(X, Y) is the maximum cost of the most efficient of all possible

matchings between X and Y diagrams.
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Wasserstein distance

A drawback of the bottleneck distance is its insensitivity to details of the
bijection beyond the furthest pair of corresponding points. To remedy this
shortcoming, we introduce the degree ¢ Wasserstein distance between X and Y
for any positive real number q. It takes the sum of q-th powers of the L_-distances
between corresponding points, again minimizing over all bijections

17



Wasserstein distance

The Wasserstein distance measures
the similarity between two
persistence diagrams. It is the
shortest distance dW for which there
exists a perfect matching between
the points of the two diagrams
(completed with all the points on the
diagonal in order to ignore
cardinality mismatchs) such that the
total p-distance between matched
points is dW.




Wasserstein distance

Similarly to the dB, the dW(X, Y) is the total cost of the most efficient of all
possible matchings between X and Y diagrams.
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How do we compute Frechet mean between diagrams?

Problem #3: not clear definition of averages on persistence diagrams

20



How do we compute distances between diagrams?

Another way to compute distances between two diagrams is by transforming them

to another persistence representation

21



Representations of persistence
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Representations of persistence

We can use different representations of persistence to define distances between
diagrams that are not easy to define in the space of persistence barcodes or
persistence diagrams:

Betti curves
Persistence images
Landscapes

Simple statistics

23



Persistence of a neuronal morphology

From the neuronal morphology we can extract persistence diagrams and barcodes
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Persistence of a neuronal morphology

Computing the difference between radial and path distance diagrams:

Persistence diagram Persistence diagram

[
O
c
©

-t

0

o

o

=
@©
—

t
©

—

n

100 150 200 100 150 200 250
End radial distance End radial distance

25



Betti curves difference

We can compute the difference between the Betti curves of the barcodes:

Persistence barcode Persistence barcode

100 150 200 100 150 200 250 300 350 400
Lifetime: radial distance Lifetime: radial distance
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Betti curves difference

We can compute the difference between the Betti curves of the barcodes:

Persistence barcode
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Betti curves difference

We can compute the difference between the Betti curves of the barcodes:

Persistence barcode

—
P
(]

=
it
o

[
N
w

=
o
o

N
)

wv
|
©
o
N
5]
L
]
o
£
=
=2

L)
=}

N
w

o
=}

100 150 200 250 300 350 400 0 50 100 150 200 250 300
Lifetime: radial distance Lifetime

28



Betti curves difference

In this case, the difference between the two diagrams can be computed by:

- total difference

- maximum difference
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Betti curves difference

This difference will heavily depend on the normalization of the input data!
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Persistence images difference

Persistence images are generated by gaussian kernel averages around the
persistence points of the persistence diagram

Persistence diagram Persistence image
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Persistence images difference

Persistence images are generated by gaussian kernel averages around the
persistence points of the persistence diagram

Persistence diagram Persistence image
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Persistence images difference

Persistence images are generated by gaussian kernel averages around the
persistence points of the persistence diagram

Persistence diagram Persistence image
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Persistence images difference

Persistence images are generated by gaussian kernel averages around the
persistence points of the persistence diagram

Persistence diagram Persistence image
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Persistence images difference

Persistence image difference can be computed based on the difference between
each pixel value between two images

Persistence image Persistence image
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Persistence images difference

Persistence image difference can be computed based on the difference between
each pixel value between two images

100 150 200 250 300 350
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Persistence images difference

Normalization and parameters are also important for the computation of

differences between persistence images:
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Persistence images difference

Normalization and parameters are also important for the computation of

differences between persistence images:
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Persistence Landscape

Persistence landscape. First, we "lie
down” the persistence diagram (b).
Formally this corresponds to
moving from (birth, death)
coordinates into (middlife, half life)
ones. Then, for the image of every
interval (b, d) in the new
coordinates, we draw a plot of the
function f(b,d) as in (c). Then, the
first landscape function, Al is
depicted in Figure (d), the A2 in (e)
and A3 in (f)
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Persistence Landscape

Algorithm used to construct
the persistence landscape
corresponding to the
birth-death pairs {(1, 5), (2, 8),
(3, 4), (5,9), (6, 7)}. The first
three critical points define Al
(max green line). The
remaining pairs (red points)
generate the second landscape
A2 (second green line) until
the final A3 is generated by the
remaining two peaks.
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Landscape difference

Similarly to the previous
representations, a vector can also be
extracted from the persistence

landscapes.

For example for the neuronal
morphology, the persistence
landscape is:
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Landscape difference

The vector created by adding all
landscapes together can be used for
the computation of the difference
between landscapes by extracting:

- Max difference
- Total difference

2000

4000

)



Persistence diagrams statistics

Another way to vectorize persistence is to extract a list of statistical properties

from the diagram. These can be for example:

Persistence Statistics [dim=0
Mean STD Median QR
Births 94.2704 30.8133 96.0000 35.0000
Deaths 109.0687 24.6201 110.0000 26.0000

Midpoints  101.6695 24.4832 99.0000 24.5000

Lifespans 147983 26.7117 5.0000 10.0000

https://persistent-homology.streamlit.app/
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Classification based on persistence
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Classification based on persistence

The basic idea for the use of persistence for classification tasks, is the need to

vectorize the persistence:
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Classification based on persistence

The basic idea for the use of persistence for classification tasks, is the need to
vectorize the persistence, as described in the previous examples:

(c)

Statistics:

# points,
Mean birth
Mean death ...
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Classification based on persistence

For more ideas about vectorization techniques you can take a look at:
A Survey of Vectorization Methods in Topological Data Analysis, Ali et al. 2022
And try out their web app:

https://persistent-homology.streamlit.app/
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Classification based on persistence

The basic idea for the use of persistence for classification tasks, is the need to
vectorize the persistence, then any ML algorithm can be used as in other datasets.

B. Feature extraction C. Learning models

PersLay

Diagram

— | XGBOOST

’

Statistics Vectorization
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A Topological Representation of Branching Neuronal Morphologies

Kanari et al. 2018
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A Topological Representation of Branching Neuronal Morphologies

Many biological systems consist of branching structures that exhibit a wide variety of shapes.
Our understanding of their systematic roles is hampered from the start by the lack of a
fundamental means of standardizing the description of complex branching patterns, such as
those of neuronal trees. To solve this problem, we have invented the Topological Morphology
Descriptor (TMD), a method for encoding the spatial structure of any tree as a “barcode”, a
unique topological signature. As opposed to traditional morphometrics, the TMD couples the
topology of the branches with their spatial extents by tracking their topological evolution in
3-dimensional space. We prove that neuronal trees, as well as stochastically generated trees,
can be accurately categorized based on their TMD profiles. The TMD retains sufficient global
and local information to create an unbiased benchmark test for their categorization and is
able to quantify and characterize the structural differences between distinct morphological
groups. The use of this mathematically rigorous method will advance our understanding of
the anatomy and diversity of branching morphologies.
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Topological Morphology Descriptor

The persistence barcode (B) of a tree (A)
represents each component as a horizontal
line whose endpoints mark its birth and
death in units that depend on the choice of
the function f used for the ordering of the
nodes of the tree. In our case, it is radial
distance of the nodes from the root (R), so
the wunits are microns. The largest
component is shown in red together with its
birth (I) and death (II). The persistence
barcode can be equivalently represented as
points in a persistence diagram (C) where
the birth (I) and death (II) of a component
are the X and Y coordinates of a point
respectively (in red).
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Death (distance from soma, um)

0 200 400 600 800 4000 1200
Lifetime (distance from soma, um)

Persistence diagram
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Topological Morphology Descriptor

Tree structure Persistence barcode

100 200 300 400
Lifetime: radial distance from soma

Tree decomposition into a barcode from longer (red) to shorter (blue) components




Topological M
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Tree structure
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A Topological Representation of Branching Neuronal Morphologies

Given a tree T with vertices v, and leaves . Algorithm 1 TMD algorithm
and a function f applied in all vertices f(vs geq“im%i(ﬂ; 1;’)8’ gt HPRRTS
nsure: y J ), & persisience € oDlain m
the TDM of the tree is given by the followmg atree T and the function /
0 1: TMD(T, f): empty list to contain pairs of real numbers
algonthm: 2A«L > A : set of active nodes
3: foreveryl € L
& w)=10)
1. Collect all leaves 5 whiloR g A
2. Find all parents of leaves (parent is a N il
vertex one step towards the root) B (R
. . . . 9: neC,ne€
3. Find all siblings (vertices that share the o ¢m : randomly choose one of ¢ | v(c) =
max(v(c")) for ¢’ € C}
same parent) : Add pto A
4. Compare their values f, the larger value : e o
persists according to Elder rule : ifci # cm
: : : Add (v(c:), f(p)) to TMD(T, f)
5. Repeat the process until the root is : u(p) <+ v(cm)

17: Add (v(R), f(R)) to TMIXT, f)
reached 18: Return TMD(T, f)
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A Topological Representation of Branchmg Neuronal Morphologies

Demonstration of the TMD
algorithm: A simple embedded
rooted tree (A) is transformed with
the TMD algorithm into the
corresponding persistence barcode
(B) and the equivalent persistence
diagram (C). The root (R) is colored
red, while the branch points and
leaves are shown in green. The edges
connecting corresponding pairs of
points are presented by straight lines.
The dashed circles are provided as a
guide to the eye to indicate different
levels of radial distances
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Topological Morphology Descriptor - Number of branches

Persistence diagram
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Topological Morphology Descriptor - Branch length

Persistence diagram
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Topological Morphology Descriptor - obliques from tuft

Persistence diagram

Close to the soma: Far from the soma:
obliques apical tufts

©
£
o
o
=
o
.
Y
)
o
c
©
-t
R
o
G
o
©
&
==
©
)
n

0.6 0.8
End radial distance from soma

58



A Topological Representation of Branching Neuronal Morphologies

Topological analysis of artificial trees generated
using a stochastic process.

Random trees were generated and their betti
curve differences (TMD-distance) were used to
cluster them. Each group differs from the
others only in the tree depth. Each individual
of the group is generated using the same tree
parameters but a different random number
seed. The TMD-distance of the trees allow
their accurate separation into groups. The
distance matrix indicates the existence of three
groups which are identified with high accuracy
by a simple dendrogram algorithm.

" ﬁ‘*\ r \ﬁ"? F"*\"r”*f‘?

oy ] 1mu||
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A Topological Representation of Branching Neuronal Morphologies

Application of topological | o
analysis to a neuronal tree
(A) showing the largest
persistent component (red).
The persistence barcode (B)
represents each component
as a horizontal line whose
endpoints mark its birth an




A Topological Representation of Branching Neuronal Morphologies

The structural differences of
the trees are clearly evident in
these barcodes. II, III and V
have clusters of short
components, clearly distinct
from the largest component,
while I and IV have bars of a
quasi-continuous distribution
of decreasing lengths. Also,
barcodes III, and V indicate
the existence of two clusters,
while barcodes I and IV are
dense overall.




A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of apical
dendrite trees extracted from several
types of rat pyramidal neuron. Four
cell types are shown in (A): UPC,
SPC, TPC-A, TPC-B (left to right).
The  morphological  differences
between these cell types are subtle,
but the unweighted persistence
images (B) clearly reveal them,

particularly the presence of two
clusters in the TPC-A and TPC-B cell

types.

f Binary classification accuracy
00 02 04 06 08 1.
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A Topological Representation of Branching Neuronal Morphologies

From these unweighted persistence
images we train a decision tree classifier
on the expert-assigned groups of cells.
The binary classification (C) and the
confusion matrix (D) based on the TMD
algorithm shows an overlap of TPC-A
and TPC-B trees. When those two classes
are merged (E, F) the separation
between the remaining types is evident.
This result shows that the unweighted
persistence images objectively support
the expert’s classification when the
morphological differences between the
classes are significant
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1000
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UPC SPC TPBA TPCB uPC sPC wPe
— Results
‘m‘ - - - - — Randomization
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A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of BigNeuron
neuronal morphologies.

Big Neuron is an effort by Allen Institute
(Seattle) to create automatic
reconstruction algorithms.

Their automatic algorithms generate
hundreds of automatic reconstructions.
The question is how to assess quality of
each algorithm.
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A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of BigNeuron
neuronal morphologies. An image stack
is used for the manual reconstruction
(reference neuron) and for the automatic
reconstructions produced by a variety of
community supplied algorithms. The
results of each algorithm are illustrated
in panel C, from best (top left) to worst
(bottom right).




A Topological Representation of Branching Neuronal Morphologies

The reference neuron (in black) is
visualized against the density plot of all
the automatically reconstructed neurons
(A, in blue), and the density plot of the
ten best automatic reconstructions (B, in
red), ranked according to their
TMD-distance from the reference
neuron. A comparison between panels A
and B shows that the density plot of the
ten  highest = ranked  automatic
reconstructions closely matches the
structure of the reference morphology




A Topological Representation of Branching Neuronal Morphologies

Demonstration of TMD algorithm Cadial i L Projeced o
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Objective Morphological Classification of Neocortical Pyramidal
Cells

Kanari et al. 2019
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Objective Morphological Classification of Neocortical PCs

Many biological systems consist of branching structures that exhibit a wide variety of shapes.
Our understanding of their systematic roles is hampered from the start by the lack of a
fundamental means of standardizing the description of complex branching patterns, such as
those of neuronal trees. To solve this problem, we have invented the Topological Morphology
Descriptor (TMD), a method for encoding the spatial structure of any tree as a “barcode”, a
unique topological signature. As opposed to traditional morphometrics, the TMD couples the
topology of the branches with their spatial extents by tracking their topological evolution in
3-dimensional space. We prove that neuronal trees, as well as stochastically generated trees,
can be accurately categorized based on their TMD profiles. The TMD retains sufficient global
and local information to create an unbiased benchmark test for their categorization and is
able to quantify and characterize the structural differences between distinct morphological
groups. The use of this mathematically rigorous method will advance our understanding of
the anatomy and diversity of branching morphologies.
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Objective Morphological Classification of Neocortical PCs

Three PC types/subtypes in Layer 2.

(A) Exemplar reconstructed
morphologies of PC dendrites: the
apical dendrite is presented in purple
and the basal dendrites in red.

(B) Polar plot analysis of dendritic
branches (apical in purple, basal in
red). Tufted PCs are oriented
towards the pia and the inverted PCs
in the opposite direction as they
project towards the white matter.
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Objective Morphological Classifi

Two PC types/subtypes in Layer 3.

Similar separation of L3 neurons
(only two classes makes the
distinction between them easier)

cation of Neocortical PCs

L3_TPC_A L3_TPC_B
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Objective Morphological Classification of Neocortical PCs

A L3_TPC A L3_TPC B B L3_TPC A L3_TPC C

Reclassification of Layer 3 PCs. (A)
Curated renderings of L3_TPC_A
and L3_TPC_B selected
morphologies as proposed by expert
classification. (B) Curated renderings
of L3_TPC_A and L3_TPC_B
selected morphologies, after
TMD-based reclassification. . (3. TPC B . P

-
©F L3 TPC_A
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Objective Morphological Classification of Neocortical PCs

A L3_TPC A L3_TPC B B L3_TPC A L3_TPC C

(C) The confusion matrix illustrates
the large percentage of misclassified
cells between the expert proposed
subtypes, yielding a total accuracy of
86%. (D) The 2 subtypes are usually
misclassified, as half of the
L3_TPC_B are confused as | |
L3_TPC_A. . st s - e

-
©F L3 TPC_A
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Objective Morphological Classification of Neocortical PCs

L3_TPC A L3_TPC B B L3_TPC A L3_TPC C

(E) The confusion matrix illustrates
the clear separation of the 2 subtypes
after the TMD-based reclassification
and the improved accuracy of the
classifier (97%). (F) The 2 subtypes
are rarely misclassified, as almost all
(~98%) of cells are unambiguously
assigned into the 2 subtypes. . 5P s srecc

>
9 '
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o S
oo =

97%
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Objective Morphological Classification of Neocortical PCs

Three PC types/subtypes in Layer 4.

Clearly separated based on their
branching structure:

TPC.: tufted
UPC: untufted

SSC: smaller - non apical like trees
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Objective Morphological Classification of Neocortical PCs

Three PC types/subtypes in Layer 5.

Clearly separated based on their
branching structure:

TPC (A,B): thick tufted
TPC (C): small tufted
UPC: untufted
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Objective Morphological Classification of Neocortical PCs

Six PC types/subtypes in Layer 6. More complicated for deeper layers:
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Objective Morphological Classification of Neocortical PCs

Convergence of subtypes L5TPC_A and B.
Illustration of selected dendritic morphologies
of L5_TPC_A (in blue) and L5_TPC_B (in red)
of decreasing topological distance (from left to
right). For border cases the 2 subtypes are very
well separated (extreme left). The persistence
images of all the presented apical trees are
shown, and the points of the persistence
diagrams for each apical tree are superimposed
on the respective persistence images. However,
as the topological distance decreases as the
persistence images converge (left to right), and
morphologies exhibit similar topological shapes
(extreme right).

Topological distance
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Objective Morphological Classification of Neocortical PCs

Accuracy of TMD - classification based on
five topological distances. The final
proposed classification for the PCs of each
Layer is tested with five different
topological distances (from left to right:
Bottle- neck, Wasserstein,
Slice-Wasserstein, Landscape, Persistence
images). For each distance, the accuracy of
the classification for 300 different
orientations is computed and visualized on
a unit sphere. The colormap illustrates the
accuracy of the classification per Layer,
where the base-line is defined by the
accuracy of a randomized labeling
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Objective Morphological Classification of Neocortical PCs

Accuracy of TMD classification and
comparison of different topological
distances. For each layer the
accuracy of the classification based
on five different topological
distances (Bottleneck, Persistence
images, Landscape, Slice
Wasserstein, Wasserstein) is
computed for 300 different
orientations. The best projection
(square) and the summed kernel of
all projections (circle) are presented
with different shades of green.
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Questions?
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