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Persistence diagrams
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Filtration over a point cloud: Vietoris-Rips or Cech
Persistence diagrams (barcodes) represent the evolution of topological features with 
respect to a parameter: here size of spheres epsilon 
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Filtration over a point cloud: Height filtration
Persistence diagrams (barcodes) represent the evolution of topological features with 
respect to a parameter: here height of a curve 
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Filtration of a tree: Topological Morphology Descriptor
In TMD we compute the evolution of topological features by traversing the tree with 
respect to a function f (radial distance, path distance etc…)
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Once we extract the persistence diagrams… 
How can we compare them, compute distances and statistics between them and 
eventually use them with machine learning tools?
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Persistence distances
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How do we compute distances between diagrams?
In Euclidean space is it “easy” to compute distances between points by computing 
the difference in each dimension:
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How do we compute distances between diagrams?
In the space of persistence diagrams we have a few problems to compute 
distances…
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How do we compute distances between diagrams?
Problem #1 in persistence diagrams: how to match dimensions? For example, red 
diagram has 12 points while blue has 10 points
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How do we compute distances between diagrams?
Problem #1 in persistence diagrams: how to match dimensions? By adding 
infinitely many points on the diagonal of the diagrams. 
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How do we compute distances between diagrams?
Problem #2 in persistence diagrams: how to align dimensions? Which points in the 
red diagram should be matched to each point in the blue diagram?
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How do we compute distances between diagrams?
Problem #2 in persistence diagrams: how to align dimensions? Optimization 
algorithm so that some quantity is minimized: red points matched either to blue 
points or points in the diagonal. The optimal matching depends on the distance!
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Bottleneck distance 
The bottleneck distance measures 
the similarity between two 
persistence diagrams. It is the 
shortest distance dB for which there 
exists a perfect matching between 
the points of the two diagrams 
(completed with all the points on 
the diagonal in order to ignore 
cardinality mismatchs) such that 
any couple of matched points are at 
distance at most dB 
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Bottleneck distance 
Let X and Y be two persistence diagrams. To define the distance between them, 
we consider bijections η : X → Y and record the supremum of the distances 
between corresponding points for each. Measuring distance between points         
x = (x1 , x2 ) and y = (y1 , y2 ) as ||x − y||∞ = max{|x 1 − y 1 |, |x 2 − y 2 |} and 
taking the infimum over all bijections, we get the bottleneck distance between 
the diagrams:
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Bottleneck distance 
Intuitively, the dB(X, Y) is the maximum cost of the most efficient of all possible 
matchings between X and Y diagrams. 
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Wasserstein distance 
A drawback of the bottleneck distance is its insensitivity to details of the 
bijection beyond the furthest pair of corresponding points. To remedy this 
shortcoming, we introduce the degree q Wasserstein distance between X and Y 
for any positive real number q. It takes the sum of q-th powers of the L∞-distances 
between corresponding points, again minimizing over all bijections
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Wasserstein distance 
The Wasserstein distance measures 
the similarity between two 
persistence diagrams. It is the 
shortest distance dW for which there 
exists a perfect matching between 
the points of the two diagrams 
(completed with all the points on the 
diagonal in order to ignore 
cardinality mismatchs) such that the 
total p-distance between matched 
points is dW.
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Wasserstein distance 
Similarly to the dB, the dW(X, Y) is the total cost of the most efficient of all 
possible matchings between X and Y diagrams. 
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How do we compute Frechet mean between diagrams?
Problem #3: not clear definition of averages on persistence diagrams 
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How do we compute distances between diagrams?
Another way to compute distances between two diagrams is by transforming them 
to another persistence representation
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Representations of persistence
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Representations of persistence
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We can use different representations of persistence to define distances between 
diagrams that are not easy to define in the space of persistence barcodes or 
persistence diagrams:

Betti curves

Persistence images

Landscapes

Simple statistics



Persistence of a neuronal morphology
From the neuronal morphology we can extract persistence diagrams and barcodes
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Persistence of a neuronal morphology
Computing the difference between radial and path distance diagrams:
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Betti curves difference
We can compute the difference between the Betti curves of the barcodes:
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Betti curves difference
We can compute the difference between the Betti curves of the barcodes:
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Betti curves difference
We can compute the difference between the Betti curves of the barcodes:
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Betti curves difference
In this case, the difference between the two diagrams can be computed by: 
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- total difference

- maximum difference 

…



Betti curves difference
This difference will heavily depend on the normalization of the input data! 
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Persistence images difference
Persistence images are generated by gaussian kernel averages around the 
persistence points of the persistence diagram
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Persistence images difference
Persistence images are generated by gaussian kernel averages around the 
persistence points of the persistence diagram
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Persistence images difference
Persistence images are generated by gaussian kernel averages around the 
persistence points of the persistence diagram
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Persistence images difference
Persistence images are generated by gaussian kernel averages around the 
persistence points of the persistence diagram
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Persistence images difference
Persistence image difference can be computed based on the difference between 
each pixel value between two images
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Persistence images difference
Persistence image difference can be computed based on the difference between 
each pixel value between two images
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Persistence images difference
Normalization and parameters are also important for the computation of 
differences between persistence images:
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Persistence images difference
Normalization and parameters are also important for the computation of 
differences between persistence images:
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Persistence Landscape 
Persistence landscape. First, we ”lie 
down” the persistence diagram (b). 
Formally this corresponds to 
moving from (birth, death) 
coordinates into (middlife, half life) 
ones. Then, for the image of every 
interval (b, d) in the new 
coordinates, we draw a plot of the 
function f(b,d) as in (c). Then, the 
first landscape function, λ1 is 
depicted in Figure (d), the λ2 in (e) 
and λ3 in (f)
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Persistence Landscape 
Algorithm used to construct 
the persistence landscape 
corresponding to the 
birth-death pairs {(1, 5), (2, 8), 
(3, 4), (5, 9), (6, 7)}. The first 
three critical points define λ1 
(max green line). The 
remaining pairs (red points) 
generate the second landscape 
λ2 (second green line) until 
the final λ3 is generated by the 
remaining two peaks. 
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Landscape difference
Similarly to the previous 
representations, a vector can also be 
extracted from the persistence 
landscapes. 

For example for the neuronal 
morphology, the persistence 
landscape is:
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Landscape difference
The vector created by adding all 
landscapes together can be used for 
the computation of the difference 
between landscapes by extracting:

- Max difference
- Total difference 

…
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Persistence diagrams statistics
Another way to vectorize persistence is to extract a list of statistical properties 
from the diagram. These can be for example: 

https://persistent-homology.streamlit.app/
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Classification based on persistence
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Classification based on persistence
The basic idea for the use of persistence for classification tasks, is the need to 
vectorize the persistence:
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[x1, x2, x3, …, xn]

[y1, y2, y3, …, yn]

[k1, k2, k3, …, kn]



Classification based on persistence
The basic idea for the use of persistence for classification tasks, is the need to 
vectorize the persistence, as described in the previous examples:
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Statistics:
# points,
Mean birth
Mean death …



Classification based on persistence
For more ideas about vectorization techniques you can take a look at:

A Survey of Vectorization Methods in Topological Data Analysis, Ali et al. 2022

And try out their web app:

https://persistent-homology.streamlit.app/
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Classification based on persistence
The basic idea for the use of persistence for classification tasks, is the need to 
vectorize the persistence, then any ML algorithm can be used as in other datasets.
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A Topological Representation of Branching Neuronal Morphologies

Kanari et al. 2018
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A Topological Representation of Branching Neuronal Morphologies

Many biological systems consist of branching structures that exhibit a wide variety of shapes. 
Our understanding of their systematic roles is hampered from the start by the lack of a 
fundamental means of standardizing the description of complex branching patterns, such as 
those of neuronal trees. To solve this problem, we have invented the Topological Morphology 
Descriptor (TMD), a method for encoding the spatial structure of any tree as a “barcode”, a 
unique topological signature. As opposed to traditional morphometrics, the TMD couples the 
topology of the branches with their spatial extents by tracking their topological evolution in 
3-dimensional space. We prove that neuronal trees, as well as stochastically generated trees, 
can be accurately categorized based on their TMD profiles. The TMD retains sufficient global 
and local information to create an unbiased benchmark test for their categorization and is 
able to quantify and characterize the structural differences between distinct morphological 
groups. The use of this mathematically rigorous method will advance our understanding of 
the anatomy and diversity of branching morphologies.
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Topological Morphology Descriptor
The persistence barcode (B) of a tree (A) 
represents each component as a horizontal 
line whose endpoints mark its birth and 
death in units that depend on the choice of 
the function f used for the ordering of the 
nodes of the tree. In our case, it is radial 
distance of the nodes from the root (R), so 
the units are microns. The largest 
component is shown in red together with its 
birth (I) and death (II). The persistence 
barcode can be equivalently represented as 
points in a persistence diagram (C) where 
the birth (I) and death (II) of a component 
are the X and Y coordinates of a point 
respectively (in red). 
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Topological Morphology Descriptor

52
Tree decomposition into a barcode from longer (red) to shorter (blue) components



Topological Morphology Descriptor
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A Topological Representation of Branching Neuronal Morphologies
Given a tree T with vertices vi and leaves lj, 
and a function f applied in all vertices f(vi) 
the TDM of the tree is given by the following 
algorithm:

1. Collect all leaves 
2. Find all parents of leaves (parent is a 

vertex one step towards the root)
3. Find all siblings (vertices that share the 

same parent)
4. Compare their values f, the larger value 

persists according to Elder rule
5. Repeat the process until the root is 

reached
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A Topological Representation of Branching Neuronal Morphologies
Demonstration of the TMD 
algorithm: A simple embedded 
rooted tree (A) is transformed with 
the TMD algorithm into the 
corresponding persistence barcode 
(B) and the equivalent persistence 
diagram (C). The root (R) is colored 
red, while the branch points and 
leaves are shown in green. The edges 
connecting corresponding pairs of 
points are presented by straight lines. 
The dashed circles are provided as a 
guide to the eye to indicate different 
levels of radial distances
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Topological Morphology Descriptor - Number of branches

56

Number of points -> 
number of branches 
in the tree 



Topological Morphology Descriptor - Branch length 
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Far from diagonal: 
largest branch, 
corresponds to apical 
main trunk

Distance from 
diagonal: branch 
size



Topological Morphology Descriptor - obliques from tuft
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Far from the soma: 
apical tufts

Close to the soma: 
obliques



A Topological Representation of Branching Neuronal Morphologies

Topological analysis of artificial trees generated 
using a stochastic process. 

Random trees were generated and their betti 
curve differences (TMD-distance) were used to 
cluster them. Each group differs from the 
others only in the tree depth. Each individual 
of the group is generated using the same tree 
parameters but a different random number 
seed. The TMD-distance of the trees allow 
their accurate separation into groups. The 
distance matrix indicates the existence of three 
groups which are identified with high accuracy 
by a simple dendrogram algorithm.
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A Topological Representation of Branching Neuronal Morphologies
Application of topological 
analysis to a neuronal tree 
(A) showing the largest 
persistent component (red). 
The persistence barcode (B) 
represents each component 
as a horizontal line whose 
endpoints mark its birth an
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A Topological Representation of Branching Neuronal Morphologies
The structural differences of 
the trees are clearly evident in 
these barcodes. II, III and V 
have clusters of short 
components, clearly distinct 
from the largest component, 
while I and IV have bars of a 
quasi-continuous distribution 
of decreasing lengths. Also, 
barcodes III, and V indicate 
the existence of two clusters, 
while barcodes I and IV are 
dense overall. 
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A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of apical 
dendrite trees extracted from several 
types of rat pyramidal neuron. Four 
cell types are shown in (A): UPC, 
SPC, TPC-A, TPC-B (left to right). 
The morphological differences 
between these cell types are subtle, 
but the unweighted persistence 
images (B) clearly reveal them, 
particularly the presence of two 
clusters in the TPC-A and TPC-B cell 
types. 
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A Topological Representation of Branching Neuronal Morphologies

From these unweighted persistence 
images we train a decision tree classifier 
on the expert-assigned groups of cells. 
The binary classification (C) and the 
confusion matrix (D) based on the TMD 
algorithm shows an overlap of TPC-A 
and TPC-B trees. When those two classes 
are merged (E, F) the separation 
between the remaining types is evident. 
This result shows that the unweighted 
persistence images objectively support 
the expert’s classification when the 
morphological differences between the 
classes are significant
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A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of BigNeuron 
neuronal morphologies. 

Big Neuron is an effort by Allen Institute 
(Seattle) to create automatic 
reconstruction algorithms. 

Their automatic algorithms generate 
hundreds of automatic reconstructions. 
The question is how to assess quality of 
each algorithm. 
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A Topological Representation of Branching Neuronal Morphologies

Comparison of the TMD of BigNeuron 
neuronal morphologies. An image stack 
is used for the manual reconstruction 
(reference neuron) and for the automatic 
reconstructions produced by a variety of 
community supplied algorithms. The 
results of each algorithm are illustrated 
in panel C, from best (top left) to worst 
(bottom right). 
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A Topological Representation of Branching Neuronal Morphologies

The reference neuron (in black) is 
visualized against the density plot of all 
the automatically reconstructed neurons 
(A, in blue), and the density plot of the 
ten best automatic reconstructions (B, in 
red), ranked according to their 
TMD-distance from the reference 
neuron. A comparison between panels A 
and B shows that the density plot of the 
ten highest ranked automatic 
reconstructions closely matches the 
structure of the reference morphology
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A Topological Representation of Branching Neuronal Morphologies

Demonstration of TMD algorithm 
for different morphological features. 
A. Radial distance from the soma. B. 
Path distance from the soma. C. 
Projected radial distance from the 
soma to the axis normal to the pia; 
this measurement can discriminate 
trees with different spatial 
distributions. D. Branch order; this 
measurement does not take into 
account the embedding in space, 
only the combinatorial branching 
patterns of the tree. 
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 Objective Morphological Classification of Neocortical Pyramidal 
Cells

Kanari et al. 2019
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 Objective Morphological Classification of Neocortical PCs

Many biological systems consist of branching structures that exhibit a wide variety of shapes. 
Our understanding of their systematic roles is hampered from the start by the lack of a 
fundamental means of standardizing the description of complex branching patterns, such as 
those of neuronal trees. To solve this problem, we have invented the Topological Morphology 
Descriptor (TMD), a method for encoding the spatial structure of any tree as a “barcode”, a 
unique topological signature. As opposed to traditional morphometrics, the TMD couples the 
topology of the branches with their spatial extents by tracking their topological evolution in 
3-dimensional space. We prove that neuronal trees, as well as stochastically generated trees, 
can be accurately categorized based on their TMD profiles. The TMD retains sufficient global 
and local information to create an unbiased benchmark test for their categorization and is 
able to quantify and characterize the structural differences between distinct morphological 
groups. The use of this mathematically rigorous method will advance our understanding of 
the anatomy and diversity of branching morphologies.
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 Objective Morphological Classification of Neocortical PCs
Three PC types/subtypes in Layer 2. 

(A) Exemplar reconstructed 
morphologies of PC dendrites: the 
apical dendrite is presented in purple 
and the basal dendrites in red.

(B) Polar plot analysis of dendritic 
branches (apical in purple, basal in 
red). Tufted PCs are oriented 
towards the pia and the inverted PCs 
in the opposite direction as they 
project towards the white matter. 
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 Objective Morphological Classification of Neocortical PCs
Two PC types/subtypes in Layer 3. 

Similar separation of L3 neurons 
(only two classes makes the 
distinction between them easier)
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 Objective Morphological Classification of Neocortical PCs
Reclassification of Layer 3 PCs. (A) 
Curated renderings of L3_TPC_A 
and L3_TPC_B selected 
morphologies as proposed by expert 
classification. (B) Curated renderings 
of L3_TPC_A and L3_TPC_B 
selected morphologies, after 
TMD-based reclassification. 
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 Objective Morphological Classification of Neocortical PCs
(C) The confusion matrix illustrates 
the large percentage of misclassified 
cells between the expert proposed 
subtypes, yielding a total accuracy of 
86%. (D) The 2 subtypes are usually 
misclassified, as half of the 
L3_TPC_B are confused as 
L3_TPC_A.
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 Objective Morphological Classification of Neocortical PCs
(E) The confusion matrix illustrates 
the clear separation of the 2 subtypes 
after the TMD-based reclassification 
and the improved accuracy of the 
classifier (97%). (F) The 2 subtypes 
are rarely misclassified, as almost all 
(~98%) of cells are unambiguously 
assigned into the 2 subtypes.
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 Objective Morphological Classification of Neocortical PCs
Three PC types/subtypes in Layer 4.

Clearly separated based on their 
branching structure:

TPC: tufted

UPC: untufted

SSC: smaller - non apical like trees 
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 Objective Morphological Classification of Neocortical PCs
Three PC types/subtypes in Layer 5. 

Clearly separated based on their 
branching structure:

TPC (A,B):  thick tufted

TPC (C): small tufted

UPC: untufted
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 Objective Morphological Classification of Neocortical PCs
Six PC types/subtypes in Layer 6. More complicated for deeper layers:
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 Objective Morphological Classification of Neocortical PCs
Convergence of subtypes L5TPC_A and B. 
Illustration of selected dendritic morphologies 
of L5_TPC_A (in blue) and L5_TPC_B (in red) 
of decreasing topological distance (from left to 
right). For border cases the 2 subtypes are very 
well separated (extreme left). The persistence 
images of all the presented apical trees are 
shown, and the points of the persistence 
diagrams for each apical tree are superimposed 
on the respective persistence images. However, 
as the topological distance decreases as the 
persistence images converge (left to right), and 
morphologies exhibit similar topological shapes 
(extreme right).
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 Objective Morphological Classification of Neocortical PCs
Accuracy of TMD – classification based on 
five topological distances. The final 
proposed classification for the PCs of each 
Layer is tested with five different 
topological distances (from left to right: 
Bottle- neck, Wasserstein, 
Slice-Wasserstein, Landscape, Persistence 
images). For each distance, the accuracy of 
the classification for 300 different 
orientations is computed and visualized on 
a unit sphere. The colormap illustrates the 
accuracy of the classification per Layer, 
where the base-line is defined by the 
accuracy of a randomized labeling
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 Objective Morphological Classification of Neocortical PCs
Accuracy of TMD classification and 
comparison of different topological 
distances. For each layer the 
accuracy of the classification based 
on five different topological 
distances (Bottleneck, Persistence 
images, Landscape, Slice 
Wasserstein, Wasserstein) is 
computed for 300 different 
orientations. The best projection 
(square) and the summed kernel of 
all projections (circle) are presented 
with different shades of green.
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Questions?
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